Some inverse eigenproblems for Jacobi and arrow matrices

نویسندگان

  • Carlos F. Borges
  • Ruggero Frezza
  • William B. Gragg
چکیده

Ve consider tl1e problem or re<:eH18l.r11dir1g Jacobi rnatric:e8 a.rid real symmetric: arrow ma.I.rices from two cigcnpairs. ,'\lgoritl1rn8 ror solving l.licsc i11vcr8c problem;; are presented. \Ve show that there are rea;;onable condition;;, under which this reconstruction is always possible. }foreover, it is ;;,een that in certain cases reconstruction can proceed with little or no cancellation. The algorithm is particularly elegant for the tridiagonal matrix associated with a bicliagon al si r1g11 lar va.l uc clcco111posil.ior1. Keyu.,ords: Jacobi matrix, Arrow matrix, inverse problem. 1 lntru 0 for i = 1. 2, .. ., n 1. Vi·'e u::;e Lhe nola.Lion inLroduced in [1:1] a.nd leL UST(n.) denote the set of n x n real unreduced symmetric tridiagonal matrices, and let UST+ (n) denote that s11hset of UST(n) with positive ;1;. \Ve wish to develop an algorithm to rPconstru ct '/'from thP knmvlPdgP of two of iL8 eigenpa.irn (.\, u) an)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Jacobi-Davidson Method for Nonlinear Eigenproblems

For the nonlinear eigenvalue problem T (λ)x = 0 we consider a Jacobi–Davidson type iterative projection method. The resulting projected nonlinear eigenvalue problems are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.

متن کامل

Controlling Inner Iterations in the Jacobi-Davidson Method

The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1995